Suppose $f(x, y)$ is a nice, differentiable function that we are trying to optimize subject to the constraint $x^{2}+y^{2}-1=0$. If we try to solve the Lagrange multipliers equations, which of the following statements is accurate?

It is possible to find no solutions.
We are guaranteed to find at least one solution.
We are guaranteed to find at least two solutions.
None of the above

Example: $f(x, y)=x+y \quad g(x, y)=x^{2}+y^{2}-1 \quad$ For this particular choice of $f(x, y)$, there

$$
\nabla f=\langle 1,1\rangle \quad \nabla g=\langle 2 x, 2 y\rangle
$$

$$
\begin{cases}1=2 x \lambda & \text { Get } x=y \text { from first two } \\ 1=2 y \lambda & \text { eggs. } \\ x^{2}+y^{2}-1=0 & \end{cases}
$$

Then solve to find (x, y)

$$
\begin{aligned}
& =\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right) \text { or }\left(\frac{-\sqrt{2}}{2}, \frac{-\sqrt{2}}{2}\right) \\
& x^{y}+y^{2}-1=0
\end{aligned}
$$

were two solutions.
What can you say in general if $f(x, y)$ is allowed to be any (differentiable) function?

(Another example, this time with 4 solutions)

Key point EXTREME VALUE THM. it guarantees the exatene of max and min of a function f on a region R if \cdots

- f is continuous on R, and
- R is closed: every point that is "infinitesimally close" to R is actually in R In other words, any point not in R has "positive distance from R.
- R is bounded, ie e does 4 go "of to infinity".

$$
x \geqslant 0
$$

$$
\begin{aligned}
& x^{2}+y^{2} \leq 1 \\
& \& \quad x<0
\end{aligned}
$$

$x y=1$
closed bounded
closed bounded

$$
x^{2}+y^{2}-1=0
$$

Moreover: $f(x, y)$ was assumed differentiable, so in particular continuous
So EVT applies:
$\therefore f(x, y)$ has a max and a min on \square
Note: if max and min occur (2) same point. then f is constant on constraint region, so every pt is a solution (∞ many sol.) In any case: ot least two solutions.

1 Af $g(x, y)=0$ is not doped or not bad, this is not applicable ecg. $f(x, y)=x+y$ has no max and no min on $x-y=0$

Every point lin the domain of f) by definition belongs to some level set of f. I just can't draw all the level sets (there are infinitely many).

$$
f(x, y)=4+\cos x
$$

$f(0,0)=5$ so $(0,0)$ is on level set $4+\cos x=5$

